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The fluid motion, temperature distribution and the mass-transfer problem of a binary 
gas mixture in a rapidly rotating centrifuge are investigated. The model centrifuge 
considered consists of a pair of concentric circular cylinders bounded on the top and 
bottom by horizontal end plates; the apparatus rotates rapidly about the axis of the 
cylinders. During steady operation a binary gas mixture containing species A and 
B is injected into and withdrawn from the centrifuge through axisymmetric slots 
located on the sidewalls. Solutions for the velocity, temperature and mass-fraction 
fields within the centrifuge are obtained for mechanically or thermally driven 
centrifuges. For the mass-transfer problem, a detailed analysis of the fluid-mechanical 
boundary layers is required, and, in particular, mass fluxes within the boundary layers 
are obtained for a wide range of source-sink geometries. Solutions to the mass-transfer 
problem are obtained for moderately and strongly forced flows in the container; the 
dependence of the separation (or enrichment) factor on centrifuge configuration, 
rotational speed and fraction of the volumetric flow rate extracted a t  the product 
port (the cut) are predicted. 

1. Introduction 
The mass-transfer or species-concentration problem in rapidly rotating containers 

has become an important research area in recent years because such problems often 
occur in industrial applications where separation of binary mixtures is required. Gas 
centrifuges are widely used to  separate two-component mixtures by taking advantage 
of the large radial pressure gradient that is set up as a result of rapid rotation. The 
separation process is often called enrichment, since, for a binary mixture containing 
species A and B, the objective is t o  enrich the mixture in the desirable component 
species A ,  for example. Detailed experimentation is essentially impossible because 
of the high rotation rates that  are typical of centrifuge operation (Olander 1972), and 
consequently it is important to  develop a theoretical approach to such problems. The 
theoretical problem is made difficult because of the wide variety of complicated flows 
that can occur within a rapidly rotating centrifuge. Such flows have been the focus 
of a number of investigations since the original study of Sakurai & Matsuda (1974) ; 
in this latter study the motion of a gas within a circular cylindrical container, which 
rotates a t  large rates about the cylinder axis, was considered. The container walls 
were assumed to be perfectly thermally conducting and to be maintained a t  constant 
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temperature; motion within the container was induced by an applied thermal 
gradient between the horizontal endwalls of the container. Since the study of Sakurai 
& Matsuda (19741, a large number of investigations have been carried out, some of 
which are discussed by Soubbaramayer (1979), Conlisk (1978) and Bark & Hultgren 
(1979). I n  particular, the effects of various combinations of thermally insulating and 
thermally conducting walls for a wide variety of geometries have been considered by 
Matsuda, Hashimoto & Takeda (1976), Matsuda & Hashimoto (1978) and Matsuda 
& Takeda (1978). These studies are critically reviewed by Bark & Hultgren (1979), 
who also present a numerical method for the computation of the flow field and 
temperature distribution in geometries similar t o  those of the previous authors. I n  
all of these studies, motion within the container geometry considered is driven by 
differential rotation of either a sidewall or an endwall, or by imposition of a 
temperature gradient across the container. I n  addition the containers were closed and 
there was no net mass transport through the apparatus. 

However, centrifuges are normally operated continuously, whereby the binary 
mixture is continually injected and withdrawn from the rotating container during 
operation. The studies by Matsuda, Sukurai & Takeda (1975), Nakayama & Usui 
(1974) and Matsuda & Hashimoto (1976) do consider sourcesink flows in combination 
with an applied thermal gradient. These investigations have been reviewed by Conlisk 
(1978), who points out that, for the most part, these studies do not convey a complete 
understanding of the flow field that exists in a typical centrifuge ; this is because either 
the geometries considered were artificially selected in an attempt to  avoid the 
presence of vertical shear layers or because the parameter ranges considered were not 
realistic. More recently, Wood & Morton (1980) have described an approximate 
method for the computation of the internal flow in a centrifuge with a sourcesink 
flow. 

I n  the present study, a model centrifuge is considered that is similar to the types 
discussed by Olander (1972). This model consists of a pair of concentric circular 
cylinders that are bounded in the vertical direction by horizontal end plates and that 
rotate rapidly about their common axis. A binary gas mixture is assumed to be 
continuously injected a t  some location on the inner radius through an  axisymmetric 
slot; withdrawal of the separating mixture is assumed to take place at two or more 
locations on either the inner or outer radius through axisymmetric slots. The 
configuration is depicted schematically in cross-section in figure 1. 

I n  the present study i t  will be demonstrated that the source-sink flow induces no 
vertical or significant radial motion within the geostrophic core region and that only 
an azimuthal velocity occurs in a direction opposite to the rotation. This swirl 
velocity is adjusted to relative rest on the solid walls through E k m p  boundary layers 
on the horizontal end plates, and a set of vertical shear layers on the sidewalls; the 
entire mass transport due to the source-sink flow takes place through these boundary 
layers, as in the incompressible case (Hide 1968; Conlisk & Walker 1981). I n  this 
study, the mass-transfer problem for the binary gas mixture is considered, and i t  
emerges that the separation process may be controlled and enhanced by inducing a 
vertical motion within the core region. A vertical velocity in the core region may be 
accomplished in a t  least two ways. I n  a thermally driven centrifuge (Olander 1972), 
a small temperature gradient is applied between the horizontal endwalls of the 
container; in a mechanically driven centrifuge one of the end plates is rotated a t  a 
slightly different rate than the rest of the container. In  the present study, both effects 
as well as the source-sink flow are considered for a container having thermally 
conducting walls maintained a t  constant temperature. 
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The fluid-flow and heat-transfer problems for the model centrifuge are considered 
in 52 for a wide range of possible methods of injection into and withdrawal from the 
centrifuge. Solutions for the source-sink flow, as well as a variety of thermally 
induced and mechanically driven flows, are given for the geostropic flows. I n  addition, 
a detailed boundary-layer analysis is carried out in order to  evaluate the mass fluxes 
in the boundary layers ; these are required for consideration of the mass-transfer 
problem in 53. 

In  a gas centrifuge, the binary gas mixture is often injected from the inner cylinder 
into the annular region between the cylinders and the product gas, which is enriched 
in the desirable species (denoted here as species A )  is withdrawn at some location, 
usually on the inner wall. The waste gas which is depleted in species A relative to 
the incoming mixture is normally withdrawn a t  some location on the periphery of 
the apparatus. It is worthwhile to note that this description of centrifuges is by no 
means universal and many other geometries have been studied as models for 
centrifuge applications (see e.g. Olander 1972 ; Matsuda et al. 1975; Nakayama & Usui 
1974 ; Nakayama & Torii 1974) ; however, even for a given geometry the determination 
of where the entrance, product and waste ports should be located to achieve optimal 
performance is still an unsolved problem, principally because of the uncertainties that 
surround the proper method of solving the mass-transfer equation. As a first step 
toward resolving some of these difficulties, a particular sourcesink configuration is 
adopted for the mass-transfer analysis. I n  addition, i t  is assumed that both species 
A and B in the binary mixture have large molecular weights, and further that species 
A is both the lighter species and the species for which enrichment is desired. I n  the 
model centrifuge depicted in figure 1,  the binary gas enters the centrifuge through 
a small axisymmetric slot in the corner region of the bottom plate and inner cylinder. 
Gas is also extracted through a similar slot at the top plate on the inner axis; since 
gas near the axis is expected to be relatively lighter and therefore enriched in species 
A, this port is designated the product port in figure 1. The heavier species is expected 
to collect a t  the outer periphery; therefore gas is also extracted at a location on the 
outer cylinder a t  the bottom plate, and this axisymmetric slot is designated as the 
waste port. 

The early theoretical work on the mass-transfer problem for the gas centrifuge and 
for heavy species is described in the review article by Olander (1972). I n  general, much 
of the early work suffers from a lack of knowledge of the nature of the velocity and 
temperature fields within the centrifuge. Often some approximate flow field was 
assumed; in many cases, the effects of either the endwalls or the sidewalls were 
neglected to produce ' long-bowl ' and ' short-bowl ' solutions respectively. Perhaps the 
most serious deficiency of this early work is that the importance of the fluid-mechanical 
boundary-layer structure to the mass-transfer problem was ignored. I n  the present 
study, i t  is demonstrated that the fluid-mechanical boundary layers have an 
important effect on the mass-transfer problem ; furthermore, in one parameter range 
studied here, the species concentration itself exhibits a boundary-layer nature. 

Several studies have appeared subsequent to the review of Olander (1972), but 
appear to suffer from the same types of deficiencies as the earlier work. Nakayama 
& Torii (1974) have considered a centrifuge configuration consisting of a cylindrical 
container in which gas is injected on the bottom plate through a small annular ring 
near the centre and product gas is withdrawn through an identical ring in the top 
plate ; waste gas is withdrawn a t  the outer wall on the bottom plate and a refeed port 
is located on the top plate on the outer wall. A numerical solution to  the mass-transfer 
equation was obtained using finite-difference methods and an impermeable wall 
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condition ; the effects of thermal convection were neglected but subsequently 
incorporated in the study of Torii (1977).  I n  both of these latter papers, the presence 
of the fluid-mechanical boundary layers and their influence on the mass-transfer 
problem was ignored. Sarma (1975) has considered the problem of mass transfer above 
an infinite rotating disk: however, this geometry is not closely related to  the 
centrifuge. Matsuda (1975) has considered the solution of a radially averaged 
one-dimensional mass-transfer equation, but again without reference to the effects 
of the boundary layers. Brouwers (1976) has considered the effects on the fluid motion 
of aspect ratio in a rotating cylindrical container in which there are sources and sinks 
on the endwalls; the mass-transfer problem is briefly considered but the theoretical 
approaches described by Olander (1972) are used. Recent fluid-mechanical results and 
the latest work in the species-concentration problem have now been reviewed by 
Soubbaramayer (1979) ; however, no new approaches to the mass-transfer problem 
appear to  have been undertaken. 

An analysis of the mass-transfer problem requires the study of an additional 
equation that describes conservation of mass of one component of the binary mixture ; 
the velocity and temperature fields appear as functions in this equation. In  the 
analysis that is described in this paper, the solution to the mass-transfer equation 
for the species mass fraction wA = p:/p* will be considered for a wide range of 
physical parameters; here p* and p2 are the total and species A density respectively. 
The plan of the mass-transfer analysis is as follows. I n  $3.1 a derivation of the 
mass-transfer equation is given; in 9 3.2 the mass-transfer boundary conditions are 
derived and the contribution due to the mass fluxes in the fluid-mechanical boundary 
layers is demonstrated. Three effects influence the mass-transfer process in a 
centrifuge. First, there is ordinary diffusion in which mass transfer occurs through 
a concentration gradient (Bird, Stewart & Lightfoot 1960, p. 503). Secondly, mass 
transfer is influenced by the bulk convective motion of the gas; finally, there is 
pressure diffusion in which mass transfer occurs owing to the large radial pressure 
gradient in the centrifuge. I n  $3.3, numerical solutions for the case where ordinary 
diffusion and convection are of comparable importance are described ; an analytical 
solution for a convection-dominated problem is obtained in $3.4. Finally some general 
conclusions are given in 94. 

2. Fluid mechanics and heat transfer 
2.1. Basic equations 

The basic centrifuge configuration considered in this study consists of an annular 
region bounded by horizontal end plates a t  z* = 0 and z* = L and concentric circular 
cylinders a t  r* = aL and bL, where a and b are dimensionless and a < b. The apparatus 
i s  rapidly rotating with angular velocity f2 about the axis of the cylinders, and a 
binary gas mixture is continuously injected into the container at some location on 
the inner radius and withdrawn a t  one more or more locations on the outer or inner 
wall; the walls are assumed to be maintained a t  constant but possibly different 
temperatures, and the upper and lower plates may be rotated at angular velocities 
slightly different from that of the vertical walls. A sketch of a cross-section of the 
model centrifuge is given in figure 1 .  I n  this study, the motions in the container induce 
changes in density and pressure that are small with respect to that of the binary gas 
mixture in solid-body rotation a t  constant temperature Y’z. The equilibrium density 
and pressure distributions are governed by 
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FIGURE 1 .  Geometry and coordinate system for a cross-section of the model centrifuge. Straight 
bold arrows indicate possible locations of injection or withdrawal. The container walls are a t  
constant temperature and the top and bottom plates may be in differential rotation. Shear-layer 
structure is not to scale; note substructure near the upper corners for differential rotation of the 
top plate. The locations indicated product, feed and waste correspond to the particular sourcesink 
geometry used in the mass-transfer analysis. 

where g is the gravitational acceleration and fc is a unit vector perpendicular to the 
endwalls. Note that in general asterisks are used to denote dimensional auantities. 

Y 

The equation of state is taken to be the ideal-gas law, and, using p,* = p,* RT;, the 
solution of (2.1) is 

( 2 . 2 )  p,* = C* exp { iM2r2-  M 2  Fr z}. 

Here C* is a constant and the dimensionless parameters appearing in (2.2) are the 
rotational Mach number M and the rotational Froude number Fr, defined by 

In  addition, r = r* /L  and z = z*/L measure dimensionless distances in the radial and 
vertical directions respectively, and the gas constant R = R U / Z ,  where R, is the 
universal gas constant and x i s  the number-mean molecular weight of the mixture. 
The rotational Mach number is assumed to be O( 1). 

I n  the present study, gravitational effects are assumed negligible in the sense that 
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Fr + it. A reference density p$ is defined corresponding to the mass density of the 
entering binary gas stream a t  the inner radius, and consequently the equilibrium 
pressure and density distributions, to leading order, are 

The net mass-flow rate through the container is assumed to be small and given by 

m* = m,*& (2.6) 

where E is the Ekman number defined according to 

with ,u being the absolute viscosity. Typical values of E for modern centrifuges lie 
in the range 10-7-10-9 (Soubbaramayer 1979). A representative velocity scale may 
be defined in terms of m,* according to 

and a fluid Rossby number ef is defined by 

E f  = U,/QL. (2.9) 

The perturbations to the equilibrium pressure, density and temperature distributions 
arising from the imposed source-sink flow through the container are of relative order 
Ef. Dimensionless perturbation quantities p ,  p ,  T are formally defined according to 

p* =p ,* ( l+e fp ) ,  p* = P , * ( l + E f P ) ,  T* = T,* ( l+s fT ) ,  (2.10) 

p = p + T + O ( € f ) .  (2.11) 

and to leading order the ideal gas equation becomes 

Note that in general p is a function of pressure and temperature; however, one 
consequence of (2.10) is that the Ekman number as defined by (2.7) is constant to 
leading order. 

Taking dimensionless cylindrical coordinates ( r ,  8, z )  with origin on the axis of 
rotation on the bottom plate and with corresponding velocity components (u,  v, w )  
(made dimensionless with respect to UI), the equations governing the axisymmetric 
motion and temperature distribution are (to leading order) 

(2.12) 

(2.14) 

(2.15) 

(2.16) 

t Further analysis from $2.6 indicates the restriction is FT < Eh. 
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where 
(2.17) 

(2.18) 

Here Pr is the Prandtl number and y is the ratio of specific heats, both of which are 
assumed to be constant to leading order. I n  (2.12) and in (2.13)-(2.16) the neglected 
terms are O(s , )  and O(~f2 )  respectively. 

It is worthwhile to note that throughout this paper i t  is assumed that the ratio a of 
the inner radius to the centrifuge length and the ratio b of the outer radius to  the length 
are 0(1) quantities. For a purely cylindrical centrifuge in which the feed flow is 
introduced through the end plates, the quantity b is normally termed the aspect ratio. 
Brouwers (1976) has considered the effect of different magnitudes of the aspect ratio 
for a cylindrical container, and finds that three types of flow can occur, corresponding 
to the parameter ranges 1 % b % Ea, E i  % b - Ef and b N E ) ;  the motion in the 
cylinder is driven either by sources and sinks on the endwalls, differential rotation 
of the end plates or by maintaining the sidewalls and endwalls at different temper- 
atures. The geometry in Brouwers' (1976) study is different from the model centrifuge 
in the present study, but presumably similar methods could be used to  investigate 
the modifications of the centrifuge dynamics in the present configuration for extreme 
aspect ratios. 

The basic flow structure due to the sourcesink flow is well known (Hide 1968) and 
consists of an interior geostrophic region, Ekman layers on the horizontal endwalls 
and a set of vertical shear layers on the sidewalls having thicknesses O(Ei) and O(Ea). 
I n  the present study, solutions are obtained on the basis of linear theory wherein the 
nonlinear terms on the left-hand side of (2.13)-(2.15) are neglected. It may be shown, 
using arguments similar to those of Bennetts & Hocking (1973) that, as ef is increased, 
the nonlinear terms in (2.13) and (2.15) first become important when cf = O(@) and 
then in the Ea layers ; consequently the present analysis is valid in the parameter range 
ef < E f .  One consequence of the linearity is that  here the effects of three distinct types 
of fluid motion may be considered separately. The first of these motions results from 
the sourcesink flow, and the appropriate boundary conditions for this problem are 

u = v = w = T = Q  (2.19) 

on all solid walls except at a location of injection or withdrawal. It emerges that the 
radial and vertical velocities within the geostrophic core due to the imposed 
source-sink flow are very small; for this reason additional types of motion must be 
considered, since separation of the binary mixture is significantly affected by vertical 
motion within the geostrophic core region. I n  the centrifuge configuration considered 
in this study there are a t  least two ways in which significant vertical motion in the 
core region may be induced. In a thermally driven centrifuge, a small temperature 
gradient is imposed by heating the upper end plate to a temperature T;" above the 
reference temperature T,* of the lower horizontal plate. A thermal Rossby number 
may be defined according to  T;" - T,* 

ET = (2.20) 
T,* ' 

and the thermal boundary conditions for the perturbation temperature become 

T = O  a t  z = O ,  T=- at z = 1 .  
ef 

(2.21) 
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If the imposed temperature gradient is such that eT < E ~ ,  the effects of the imposed 
temperature gradient are negligible to leading order; on the other hand, in the case 
of interest eT = O(e,) ,  and the effects of the source-sink flow and heat transfer are 
comparable. Defining eT = AT€,, (2.21) become 

T = O  at z = O ,  T = A T  a t  z = 1 .  (2.22) 

Furthermore, if the sidewalls at r = a and r = b are maintained a t  constant 
temperatures T,* and TZ, the sidewall thermal conditions may be written 

T = A , A ,  a t  r = a ,  T=AbAT a t  r =  b ,  (2.23) 

where A, = (T,*-T,*)/(TF-T,*) and the definition of A, is analogous. 
The third effect considered here occurs in a mechanically driven centrifuge, where 

vertical motion within the core region is induced by a differential rotation of the end 
plates. A mechanical Rossby number em may be defined according to  

em = AQ/Q (2.24) 

where At2 is the magnitude of the differential rotation. Defining A, by 

Am = em/ef, (2.25) 

the effects of differential rotation are comparable to  those of the imposed source-sink 
flow for A, = O(1).  For this problem, the boundary conditions for u, w and T are 
homogeneous, and on the end plates 

v=A,A,r a t  z = 1 ,  ~ = h , A , r  a t  z = 0 .  (2.26) 

Here A, = 1, and A, is a constant, which may be either positive or negative. 

2.2. The geostrophic $ow 
Within the geostrophic core, i t  follows from (2.12)-(2.16) that, in general, the leading 
terms in the expansions for the pressure, velocities and temperature are 

u=EUG(r ,Z)+ ..., u =  & ( r , z ) + . . . ,  w=J?'WG(r)+ ..., (2.27) 

(2.28) 

where the leading term in w is O ( B )  for compatibility with the Ekman layers on the 
horizontal plates. Ekman layers are required to adjust the azimuthal geostrophic 
velocity in (2.27) to the appropriate value on the horizontal boundary. It may be 
easily demonstrated (Barcilon 1970) that  the nonlinear terms in (2.13)-(2.15) may 
be neglected provided that ef 6 1 .  Define a scaled Ekman-layer variable according to 

T = TG(r, z ) +  . . . , p = PG(r)+ . . . , 

(2.29) 

on the bottom and top plates respectively, where 

a(r)  = 1 +hu2. (2.30) 

It may easily be shown (see e.g. Sakurai & Matsuda 1974), upon substitution in 

(2.31) 
(2.13)-(2.16), that  

a 2  

82 
-(T+Bhrv) = 0, 

and consequently 
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The subscript B in general denotes that a quantity is evaluated on the boundary of 
the container; here zo = 0 or 1 and the right-hand side of (2.32) is evaluated on the 
lower or upper horizontal plate. The Ekman-layer solution for the radial and 
azimuthal velocities is conveniently expressed in terms of the complex variable 
x = u + iab, and it  may be shown that 

x = idVG(r)+id{VB(r,  20) -  VG(r)}e-(l+i)c. (2.33) 

There are two important aspects of this solution. The first of these may be obtained 
by integration of (2.33) across the Ekman layer, and is that  there is a dimensionless 
mass flux radially outward in each Ekman layer having a value of 

@ e i r )  {vB(r, 2 0 ) -  vG(r, zo))  (2.34) 

per unit length of circumference. The second aspect is the Ekman compatibility 
condition 

(T&&{v- vB(T, z 0 ) ) )  at z0 = +T$. (2.35) w = +-- 
-2rpe(r) ar 

This relation is readily obtained through use of the continuity equation and 
integration across the Ekman layer to obtain the vertical velocity a t  the Ekman-layer 
edge. 

At this stage i t  is useful to establish some general relations for the geostrophic flow. 
Since u is O ( E )  and w is O(Ea) in the core, i t  follows from (2.13) that  

VG = +rTG+P(r), (2.36) 

~4 a 

for cf < 1,  where 
(2.37) 

Equations (2.32) and (2.36) may be combined to  eliminate TG,  and this gives 

avG(r,  zo)  = +rTB(r, zo)+hr2VB(r, zO)+P( r ) .  (2.38) 

Taking zo = 0 and 1 in (2.38) and adding the resulting two equations leads to  

This equation, in combination with (2.36), gives a relationship between VG and T G ;  
the differential equation satisfied by TG(r, z )  may be obtained by using (2.14) to 
eliminate u in (2.16) and then eliminating VG using (2.36). The result is 

where e = uTG. (2.41) 

Note that for ef < I$ the last term in (2.40) is negligible, but for cf = O ( @ )  i t  is 
comparable to  the other terms; a similar convection effect appears in the study of 
Homsy & Hudson (1969). On the other hand, for < cf < 8, the solution for 0 has 
a boundary-layer character (for WG =+ 0). It will be demonstrated that in this case 
thermal layers of width O(Ea/d occur on r = a and b ;  in addition, on either z = 0 
or z = 1 a layer of width O ( E t / c f )  is present. Note that these layers are thicker than 
the velocity boundary layers on the corresponding wall. The boundary conditions for 
this equation will be discussed in $5 2.3-2.5. 
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The geostrophic flow due to three separate effects will now be considered in $$ 2.3-2.5 ; 
these effects are the source-sink flow, denoted by subscript S ( $ 2 . 3 ) ;  a mechanical 
differential rotation of the end plates, denoted by subscript M ( $ 2 . 4 ) ;  and an applied 
thermal gradient, denoted by subscript T ($2 .5) .  In  the flow regime E( 4 Ef, the 
results of any combination of the three solutions due to each effect may be 
superimposed. 

2.3.  Source-sink flow 

In the present centrifuge configuration, it is assumed that the injection and 
withdrawal occurs either in the corner regions of the container or at one or more 
locations along the vertical sidewalls. The net mass-flow rate entering the container 
from the inner radius is given by (2 .6) ,  and, since u = O ( E )  in the core, the incoming 
mass-flow rate must be balanced by the radial flow in the Ekman layers given by 
(2.34) ; consequently it follows t h a t  

2a 
rdp$  ' VGS(r, l )  + T.'cS(r, 0) = - - (2.42) 

where the subscript S is used to denote that part of the complete solution due to the 
source-sink flow. Substitution in (2 .39)  (with TB = V, = 0 at  z = 0, 1 )  yields 

(2.43) 

and i t  follows from (2.32) and (2 .39)  that the geostrophic azimuthal velocity and 
temperature distributions near the upper and lower end plates are given by 

(2 .44)  

(2.45) 

Furthermore, it then follows from the Ekman conditions (2.35) and the last of (2 .27)  

(2 .46)  
that 

and thus the source-sink flow induces no vertical motion in the core, to leading order. 
To complete specification of the boundary conditions for VGs and TGs, the vertical 

shear layers at  r = a and r = b must be considered, and using a procedure similar to 
that leading to (2 .31) ,  it may be shown (see $2.6)  that to leading order T+Bhrw is 
constant in the radial direction across the sidewall boundary layers; thus 

TGS(rO, z ,  + z h r O  V&j(rO, z ,  = 0, (2.47) 

where ro = a or b. Using (2.36) and (2.471, i t  follows that the geostrophic azimuthal 
velocity and temperature distributions near the sidewalls are given by 

W G S ( T )  = 0, 

(2 .48)  

For ef 4 E!,  the interior geostrophic solution may be obtained by solving equation 
(2 .40)  either numerically by standard relaxation techniques (Bark & Hultgren 1979) 
or by expanding in a power series for small h ;  details are omitted for brevity. 

2.4.  Differential rotation 
In a mechanically driven centrifuge, one or both end plates are rotated at  a slightly 
different rate from the vertical sidewalls, and this has the effect of inducing a vertical 
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drift velocity in the geostrophic core region. The solution for this effect will be denoted 
by a subscript M and has homogeneous boundary conditions for the temperature on 
all walls and boundary conditions for v given by (2.26). Across any radial surface there 
can exist no net mass flux associated with the differential rotation and consequently 
the radial flows in the Ekman layers on the upper and lower plates must exactly 
balance; using (2.26) and (2.34) it  follows that 

J'iGM(r, 1 )  + J ' ~ G M ( ~ ,  0) = J'ii(r9 0) + vB(r, 1) = (&+A,) Am r .  (2.49) 

Substitution in (2.39) yields 

&(r)  = t (Ao  + hi) Am r ,  (2.50) 

and i t  follows from (2.32), (2.36) and (2.50) that the geostrophic azimuthal velocity 
and temperature distributions near the upper and lower plate are given by 

(2.52) 

The boundary conditions near the sidewalls 
relation analogous to (2.50), and these are 

are obtained by using (2.46) and a 

(2.53) 

where r, = a or b .  The vertical velocity in the core is obtained by using the Ekman 
conditions (2.35) and the equations (2.51), and is given by 

(2.54) 

For ef = O ( @ ) ,  (2.40) may be solved, subject to the conditions (2.52) and (2.53), for 
the differential rotation component of the temperature field. This may be done 
numerically or as a perturbation expansion for small h ;  the details are omitted. 

In  the parameter range EB < ef -4 Ef, the thermal problem becomes a singular 
perturbation problem. Defining s = sgn { wG(r)}, the interior solution is given by 

8 = 19, = hAm(Al-Ao)sr2.  (2.55) 

This solution satisfies the boundary conditions a t  z = +( 1 - s), but a thermal boundary 
layer having a thickness O(EB/ef) is required at z = +( 1 + s). Define a scaled boundary- 
layer variable c according to 

(2.56) 

The boundary-layer solutions a t  z = i(1 +s) are 

8, = hAm(Al - A,) sr2( 1 - 2e-5'). (2.57) 

At r = a and b,  sidewall boundary layers are required to adjust the core solution (2.55) 
to the correct values on the sidewalls. Define a scaled radial coordinate according 
to 

(2.58) 
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where /3 = 1 at r,, = a and /3 = - 1 a t  ro = b ;  the sidewall thermal layers originate at  
z = +( 1 - s) and the boundary-layer solution is given by 

8, = hh,(A, -A,)  sri erf 2' - hA,(A, + A,) r$ erfc z ' ,  (2.59) 

where z' = + ~ / { s ( z - ~ ( l  -s)}. Note that the sidewall thermal layers and the thermal 
layer on the end wall have thicknesses O(Ea/ei) and O ( E i / q )  respectively, and 
consequently are much thicker than any velocity boundary layers, which have a 
maximum thickness O(,@). 

2.5.  Applied thermal gradient 

In a thermally driven centrifuge, a vertical drift velocity is induced in the geostrophic 
core region by imposing a thermal gradient between the horizontal endplates. For 
this problem, the velocity boundary conditions are homogeneous at  all solid walls, 
and the temperature boundary condtions are given by (2.22) and (2.23). As in $2.4, 
no net mass flux due to the thermally induced motion can exist across any cylindrical 
control surface, and thus the radial flows in the Ekman layers must be equal, and 
opposite in direction. Using a subscript T to denote the thermally induced motion, 
it follows from (2.34) that 

V G T ( ~ ,  1) + J'GT(rjO) = 0, (2.60) 

and substitution in (2.39), using (2.22), gives 

f!T(r) = -+AT T .  (2.61) 

It follows from (2.32), (2.36) and (2.61) that the geostrophic azimuthal velocity and 
temperature distributions near the upper and lower plates are given by 

(2.62) 

(2.63) 

The boundary values near the sidewalls of the azimuthal velocity and temperature 
follow from (2.23), (2.36) and the fact that T+ 2hrv is invariant in the radial direction 
across the vertical shear layers; these conditions are 

(2.64) 

at r = a ,  with similar conditions a t  r = b,  which may be obtained by replacing a by 
b in (2.64). The vertical velocity in the core may be obtained from the Ekman 
conditions (2.35) and the equations (2.62), and it follows that 

(2.65) 

Consequently, the applied thermal gradient induces a downward vertical drift O(E 4) 
from the upper to the lower Ekman layer; it is of interest to note that this drift 
velocity only differs by a constant from that given for a mechanically driven 
centrifuge in (2.54). 

For ef = O ( E t ) ,  (2.40) may be solved numerically to determine the interior 
temperature distribution, while for E i  4 ef < Ea a singular perturbation solution 
similar to that described in $2.4 may readily be obtained. 
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2.6. The Ef layers 

An E a layer is necessary to reduce the azimuthal velocity to relative rest on each of 
the container sidewalls ; define a boundary-layer variable c and a constant a according 

(2.66) 
to 

where p = 1 at ro = a and p = - 1 for ro = b.  The solutions for the leading terms in 
the E f  layer solution may be computed with standard techniques (Walker & 
Stewartson 1972; Matsuda & Hashimoto 1978) and are given by 

= vG(t-o)( i -e-E)+ ..., = TB(ro,z)-2hrO VG(ro) ( i - e - t )+  . . . ,  (2.67a, b )  
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= P(r-ro)aE-a, a = d 2  d ( r o ) p k ( r o ) ,  

Here vG(r0) is the limiting form of vG(T, z )  for either of the three effects given by (2 .48) ,  
(2.53) or (2 .64) ,  as r --f ro (where ro = a or b ) .  

2.7. The E i  x Ef regions 

In the Ekman-layer extensions, which are above and below the Ef layers, a/ar - E-i 
and a / a z  - E-4, and it may readily be deduced that in these regions 

a 2  

a 2 2  
- (T+2hr0v)  = 0, (2.68) 

(2.69) 
or that T+ 2hr0 'o = TB(rO + , zo) + 2hr0 VB(ro + , zo),  

where zo = 0 or 1.7 Using (2.67a, b ) ,  it  can be shown that unless there is no differential 
rotation ( VB(ro+, zo) = 0) and, in addition, unless the endwalls and sidewalls are at  
the same temperature (TB(TO+, zo) = TB(ro, zo)) ,  then the Ef layer solution is not 
compatible with the solution in the vertical direction. In this region, the velocity 
components, pressure and temperature are written, to leading order, as 

(2.70 a ,  b)  TJ = v"(5, [*)+ . .. , T = T(4, [*)+ .. ., 

p = - E ; @ ( [ ,  PW [*). 
a 

(2.70 e )  

Here g and /3 are the scaled variable and constant associated with the Ef layer and 
defined in (2.66).  In addition, [* is the scaled vertical variable defined by 
[* = a( 1 - z )  E-4 or [* = a2E-a near z = 1 and 0 respectively ; a is the constant defined 
in (2.66). The necessity of these ~ x B  regions in steady rotating flows was 
apparently first recognized by Matsuda & Hashimoto (1978), who considered the case 
of insulated endplates and conducting sidewalls ; however, the authors did not give 
a solution for the corner regions. The steady problem is also discussed heuristically 
by Bark 6 Hultgren (1979); similar problems are mentioned in Hultgren, Meijer & 
Bark (1981) and Bark, Meijer & Cohen (1978) for unsteady rotating flows, but 
solutions were not obtained. 

Substitution in (2.12)-(2.16) leads to the following equations: 

(2.71) 

t r,+ denotes either a+ or b - .  
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where 

.ii = v:a, (2.72) 

-2hr0.ii = V:p, (2.73) 

(2.74) 

It follows from the second of (2.74) that 

= - VG(ro) (zo-+) e-5 ,  (2.75) 

in order to match the Ef layer solution, where zo = 0 or 1 .  Thus since u is O(E4) and 
of lower order, the streamlines in a cross-section pass vertically straight through this 
region. According to the first of (2.74), the pressure in (2.71) may be eliminated by 

aa a!P differentiation to obtain 
2 - = r -  

ag* 0 a p 7  

2 

TO 

and consequently 
P = -v"+H(t),  (2.76) 

where the arbitrary function H ( [ )  is determined by matching to the 
limit [* --.) co. This gives? 

layer in the 

(2.77) 

Equation (2.77) with (2.76) gives one relation between Band p ,  and, to obtain a second 
relation, (2.72) and (2.73) are combined to give 

2 

YO TO 
H ( ( )  = T'- - v = TB(ro, z )  - VG(ro) (1 - e - 5 ) .  

where 
v:$ = 0, 

$ = !P+2hr06. 

(2.78) 

(2.79) 

The solution of (2.78) is now required, subject to  the conditions 

$ = $0 = TB(r, 20) +2hr0 VB(r, 20) On c* = 0, 

to match the Ekman extensions; here xo = 0, 1.  In  addition 

where ro = a or b.  The solution is 
2 c* 

t $ = $0 + ; ($1 - $0) arctan-, 

and combining with (2.76) yields 

(2.81) 

(2.82) 

(2.83) 

.ii = u(g, zo). (2.84) 

Note that the Ea x Ef regions are passive in nature and are a direct consequence of 
an irregularity in the geostrophic solution in any situation where differential rotation 

t T is the temperature in the Ef layer. 
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occurs or where a difference in temperature exists between the endwall and sidewall. 
In  this region an adjustment between the a layer and Ekman extension occurs 
vertically. 

2.8. The E i  layers 
As f [  --t 0 for fixed z,  the radial velocity in the E a layer does not in general approach 
the correct boundary conditions at the wall and an E i  layer is required for this 
adjustment. The form of the E ;  layer expansions is determined by expanding the Ea 
layer solutions given by (2.67) in a Taylor series for small f ;  and by rewriting these 
expansions in terms of the E )  layer variable 7 defined by 

7 = p ~ ( r o ) d ( r o ) / 3 ( r - r , , ) E - ~  (2.85) 

where ro = a or b ,  and /3 is defined in connection with (2.66). The velocity expansions 
in the Ef layer are of the form 

wi = - pvG(ro)d Eaw2(7, z )  + . . . , 
Pt 

(2.86) 

(2.87) 

(2.88) 

Here the functions pe and IT are evaluated a t  r = ro. The temperature and azimuthal 
velocity are related to each other by 

q% 4+2hrov;(7, 2 )  = TB(r0, 4 ,  (2.89) 

which follows upon combination of the leading-order form of (2.14) and (2.16) in the 
E ;  layer. Note that the first term in (2.86) is O(Eh) and is a regular solution 
corresponding to the continuation of the Ea layer solution into the @ layer. The other 
terms in (2.86)-(2.88) describe the structure of the layer, and in general are not 
regular (Conlisk & Walker 1981) ; in the case of injection or withdrawal at the sidewall 
through slots having a width O(Eg), the Ef layer sees such locations as point sources 
or sinks respectively, and the solution for (u2, v2, w2) will be singular there. In  the 
case of differential rotation the li$ layer solution is irregular near the corners of the 
container. In  any case, the equations satisfied by the terms in (2.86)-(2.88) are 

(2.90) 

which may be obtained from (2.12)-(2.15). The boundary conditions are the matching 
conditions to the a layer, given by 

v2 - r2, w 2 + 0 ,  u2-f 1 as 7 +  a, (2.91) 

and the conditions on the sidewalls, that 

u2 = w2 = v2 = 0 a t  7 = 0, (2.92) 

except a t  points of injection or withdrawal. Furthermore, the Ekman conditions in 
(2.35) require that 

w 2 = 0  a t  z = O , l  for q > O .  (2.93) 

Solutions of (2.90) subject to the conditions (2.91)-(2.93) have recently been 
considered by Conlisk & Walker (1981) in connection with incompressible source-sink 
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flow ; these solutions are of two types. Consider first the case where injection occurs 
through axisymmetric slots having a width O(E4) in the corners on the inner wall of 
the container; in view of the Ekman condition (2.93) the fluid cannot enter the Ef 
layer via the Ekman extension above or below the ,?8 layer. Consequently a region 
having vertical and horizontal dimensions O ( E i )  will exist about the point of 
injection; on the scale of the ,@ layer this region appears as a point source and the 
,?d layer solution must become singular as such a region is approached. Conlisk & 
Walker (1981) have obtained the solution for such injection in an integral form that 
contains the singular behaviour explicitly; the solution may also be written as a 
Fourier series at locations away from the corners, and the result is 

where w ,  = (2nn)i. The solution (2.94) describes the Ef layer flow due to sources of 
relative strengths C and C' at r = a, z = 0 and 1 respectively, such that 

c+c'= 1 ,  (2.95) 

and the volumetric flux per unit length of circumference associated with this solution 
in the E i  layer is 

Jocc wz(y, z )  dy = C( 1 - 2 )  - C'z, (2.96) 

at any height z .  The corresponding solution for the radial velocity is 

m cc 
-2C Z 6 ( ~ - 2 n ) - 2 C  Z 6(z -2n-1 ) .  (2.97) 

Here 6(z)  is the Dirac delta-function. The solution given by (2.94) and (2.97) also 
describe the flow in the ,@ layer on the outer wall a t  r = b due to sinks of relative 
strength C and C' at z = 0 and 1 respectively. 

The second type of ,?d layer solution of interest corresponds to injection or 
withdrawal through an axisymmetric slot having a vertical dimension O(B). A square 
region having dimensions O(E4) will exist near the slot, and on the scale of the 
layer this region appears as a point source or sink. Conlisk & Walker (1981) give the 
solution for a point source on the inner wall, or alternatively for a sink on the outer 
wall, at z = $ ; the Fourier-series representation is 

n --a n --a 

(2.98) 

4 m  
u2 = 1 + - c cos nnq5 e--OnVf2 sin { i d 3  w, y +in> cos nnz (2.99) 

d 3 n - 1  
a, m 

n --cc n ---00 

- I: 6(2-$-2n)-  z S(z+$--Bn).  

n + o  

The vertical flux associated with this solution in the layer is 

Jo"O w2(y, z )dy  = 1 - 2  for z > $, 

= - z  for z < $ .  

(2.100 a )  

(2.100b) 
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The only other possible type of axisymmetric injection or withdrawal on the sidewalls 
is the distributed source having a vertical dimension O(1); the solution in this case 
is also given by Conlisk & Walker (19811, but the results are not included here. 

It remains to consider the Ef layer flow due to differential rotation and the applied 
thermal gradient; in the former case the Ef layer solution for (w2, v2, w2)  is irregular 
in the corner region when the endplate is in differential rotation. Outside the Ekman 
extendon adjacent to the Ef layer, the azimuthal and radial velocities are given by 
(2.86) and (2.88) and the leading terms are O(Eh)  and O(E3) respectively; however, 
the leading-order terms for u and v are 0(1) in the Ekman extension and therefore 
arise purely from the differential rotation. It follows from (2.35) that  there is a radial 
mass flux outward in each Ekman extension equal to  &(r0) cd ( ro )  VB(ro + , z )  B; this 
flux must be balanced by a vertical flux O(Ei) in the E i  layer. However, in view of 
the Ekman compatibility condition in (2.93), the flux cannot enter or leave the Ekman 
extension for r,~ > 0. I n  fact, the fluid enters or leaves the Ef layer via an @ x B region 
in the corner of the container and on the scale of the ,?& layer this region appears 
as either a point source or point sink. To balance the influx in the Ekman extension 
it follows from (2.87) that 

(2.101) 

The solution given by (2.94) is due to point sources a t  the inner wall of strengths C 
and C' a t  z = 0 and 1 respectively. The ,?& layer solution for differential rotation may 
be obtained from (2.53) and (2.101) by using 

(2.102) 

in (2.94). Note that (2.102) do not apply for the antisymmetric case ho+h, = 0;  in 
this case there is no azimuthal geostrophic motion (see (2.53)) a t  the sidewalls and 
consequently no Ef layers; for this situation, the expansions in (2.86)-(2.88) for the 
E f layer must be modified. 

The Ef layer solutions for the thermally induced motion are also irregular in any 
corner of the container where the sidewall temperature is not equal to the temperature 
of the end wall; in such cases the solution is also given by (2.94), but with 

ha-1 
2ha- 1 ' 

C=- ha C'=- 
2ha- 1 ' 

(2.103) 

on r = a .  The corresponding solution on r = b is obtained by replacing a by b in (2.103). 
Finally, i t  is of interest to note that an E f x E 4 region similar to  the E a x E f region 

described in $2.7 will exist between the Ef layer and the Ekman extensions if either 
differential rotation occurs or if the sidewall and endwall are maintained at different 
temperatures. These square regions are passive in nature and exist to  provide an 
adjustment in the vertical direction between the layer and the Ekman extension. 
The solutions in this region are similar to those described in 52.7. 

2.9. Summary 
In  the present study, solutions have been obtained for the velocity components and 
temperature distribution in a model centrifuge consisting of a pair of concentric 
cylinders bounded by horizontal end plates in a state of rapid rotation about the axis 
of the cylinders. It has been assumed that there is a net source-sink flow of a binary 



300 A .  T .  Conlisk, M .  R.  Foster and J .  D .  A .  Walker 

gas from the inner to the outer radius, and further that  the walls are maintained at 
a constant temperature. The source-sink flow induces no radial or vertical motion 
within the geostrophic core; two effects that induce a vertical velocity O(Ei )  have 
been considered : namely a thermal gradient applied vertically and differential 
rotation of one or both the endplates. Note that in $52.3-2.5 a boundary-value 
problem for VG and TG has been formulated for the source-sink, thermal-gradient and 
differential-rotation problems respectively ; these interior problems have not been 
solved explicitly for the case e, = O ( E i ) ,  but the values of VG and TG are determined 
around the perimeter of the geostrophic core. For small h, the geostrophic problems 
may be approached as a regular perturbation problem as previously indicated ; for 
h = O( 1)  the geostrophic problem may be calculated by standard numerical methods 
(see e.g. Bark & Hultgren 1979). This aspect has not been pursued in detail here since, 
for the mass-transfer problem considered in $3, the self-diffusion coefficient of the 
binary gas mixture is independent of temperature to leading order. Consequently the 
core temperature distribution is not of primary importance in the parameter range 
considered. 

It is worthwhile to note that i t  has been assumed that the rotational Mach number 
M is O ( l ) ,  and thus the present theory does not hold for high-speed centrifuges 
(M2 g 1). More specifically, it  has been assumed that the density does not vary across 
the shear layers. The thickest shear layer is the a layer; it  may be shown, upon 
expanding (2.5) in a Taylor series about r = a or b and using (2.66), that the present 
analysis applies to the parameter range M21$ < 1. Note that this is within the 
practical ranges for M2 and E for centrifuges quoted by Soubbaramayer (1979). 

One important feature that enters the boundary conditions in the mass-transfer 
problem is the volumetric flux in the boundary layers. In  the model centrifuge these 
fluxes are O ( E t ) ;  define a dimensionless volumetric flux Fa per unit length of 
circumference in terms of the actual volumetric flux by 

(2.104) 

where m,* is defined in (2.6) and a is a subscript associated with the boundary layer 
in question. For each Ekman layer it follows from (2.34) that there is a net volumetric 
flux radially outward per unit length of circumference given by 

(2.105) 

where zo = 0 or 1,  and VG is given by either (2.44), (2.51) or (2.62), or the sum of two 
or more of these equations. 

The volumetric flux per unit length of circumference in the positive z-direction for 
the sidewall boundary layer is denoted by Fs and consists of the sum of the and 

P d ( r 0 )  (2.106) 
E layer fluxes given by 

9 i ( r o )  = - 7 &(ro) (z-k), 
Pz,(ro) 

(2.107) 

Here ro = a or b, and VG is given by either of (2.481, (2.53) or (2.64) or by the sum 
of two or more of these effects. The integral in (2.107) depends upon the placement 
of the sources and sinks on the sidewalls, and two possibilities are given in (2.96) and 
(2.100). 
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It is now possible to consider the problem of how the binary gas can undergo a 
separation process within the model centrifuge, and this question is addressed in $3. 

3. Mass transfer 
3.1. Formulation 

The mass-transfer equation for the centrifuge expresses the fact that the total mass 
of species A within the gas mixture is conserved. The absolute mass flux of species 
A is denoted by n: and is defined by 

nX = p:q:, (3.1) 

where q: is the absolute velocity of species A ,  and p; is the mass of species A per 
unit volume of solution. The flux of species A relative to the mass average velocity 
q* (calculated in $2) is denoted by jz = pz(q:-q*). Using (3.1), it  is apparent that 

n: = j; +p: q*. 

In  the species-separation problems associated with gas centrifuges, the two primary 
effects contributing to j: are ordinary and pressure diffusion ; assuming an ideal-gas 
behaviour for the solution, it may be shown, using equation (18.4-15) of Bird et al. 
(1960, p. 568), that 

(3.3) 

Here DAB is the mass-diffusion coefficient, MA and MB are the molecular weights of 
species A and B respectively, R, is the universal gas constant, p* and T* are the 
pressure and temperature of the gas respectively, and wA = p:/p* is the mass fraction 
of species A. Note that the first term on the left-hand side of (3.3) is the ordinary 
diffusion term in which the driving potential is local concentration gradient and which 
is modelled by Pick’s law ; the second term is a pressure-diffusion term in which the 
driving potential is the pressure gradient. A brief derivation of (3.3) is also given by 
Landau & Lifshitz (1959, p. 222) on the basis of kinetic theory. 

For steady-flow conditions and for no chemical reactions within the centrifuge, it 
follows that (Bird et al. 1960, p. 555) 

V*.n; = O .  (3.4) 

pe(r)E-t(q.V)oA-SEM2H(oA) = SV’wA. (3.5) 

(3.6) 

Using (3.2) and (3.3) and the dimensionless variables of $2, (3.4) may be written 

a 
dr 

Here H ( W A )  = 20, ( 1 - @ A )  + r - { @ A  (1 - wA )}. 

The two dimensionless parameters S and E are given by 

(3.7) 

and M is the rotational Mach number defined in (2.3); the Schmidt number 
Sc = ,u//I*DAB is assumed to be 0(1) and constant; E and ef are the Ekman and 
Rossby numbers defined in (2.7) and (2.9). In  obtaining (3.5), it  has been assumed 
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that  both species A and B have large molecular weights and that MB > MA ; the 
number-mean molecular weight M is given by 

1 W * E  

M MB M A ’  

- 1 - 

and in this study s is assumed small ; thus to leading order M x M B ,  and this result 
has been used to obtain (3.5). The neglected terms in (3.5) are O(Ss,, SsWs,, E2/Sc6) .  
It is also worthwhile to note that, according to  the Chapman-Enskog kinetic theory, 
p*DAB is a function of temperature alone (Bird et al. 1960, p. 510). In  the present 
study, perturbations of the temperature field about the temperature of the bottom 
plate are small. Consequently p*DA, is constant to  leading order, and this result is 
used in obtaining (3.5). 

The boundary conditions associated with (3.5) are that there is no normal mass 
flux through all solid walls, and, defining a dimensionless mass flux by nA = n;/p$ U, ,  
this condition is 

(3.8) N . n A  = o ,  
where N is a unit vector normal to  the solid wall; a t  a location where mass enters 
the container N . nA will in general be known. At radial boundaries the radial mass 
flux is given by 

nA, r = - E 6 - -I- EWro W A  (1  - W A )  pe(r) W A  U,  (3.9) 1 I%: 
where ro = a orb,  and u is the dimensionless radial velocity; at horizontal boundaries 
(2, = 0 or 1) the vertical mass flux is given by 

(3.10) 

where w is the vertical velocity. I n  general nA, = 0 a t  r = ro and nA, = 0 a t  z = zo 
for a solid wall. 

Previously published studies on the mass transfer within gas centrifuges have been 
reviewed by Olander (1972) and more recently by Soubbaramayer (1979) ; generally 
some type of approximation for the fluid velocities is made in these studies and then 
a radially averaged solution to the mass-transfer problem (equation (40) of Olander 
1972) is calculated. Commonly no attempt is made to analyse the interaction between 
the main core and the boundary-layer flows. For these and other reasons, the previous 
theoretical work on gas centrifuges is somewhat unsatisfying, and in this section a 
rational asymptotic analysis of the mass-transfer problem is considered. To establish 
the character of the solutions of (3.5) for a wide range of the parameter 6, it is 
convenient to  assign a terminology to each parameter range and these are : (i) weak 
forced flow corresponding to  ef 4 Ei,  6 9 1 ; (ii) moderate forced flow corresponding 
to sf = O(E:),  6 = O(1);  and (iii) strong forced flow with E i  4 sf 4 E i ,  S 4 1.  I n  this 
paper, the parameter ranges 6 = 0 ( 1 )  and 6 4 1 will be investigated; the results of 
the case of weak forced flow, 6 B 1 ,  will be reported elsewhere. The interaction of the 
fluid-mechanical boundary layers with the mass-transfer problem is a crucial feature 
of the separation process. This interaction is the subject of the analysis of $3.2. 
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3.2. Boundary conditions 
Consider the model centrifuge depicted schematically in figure 1 for which the binary 
gas mixture enters the container a t  r = a, z = 0 with a unit (dimensionless) volumetric 
flow rate; let wE denote the mass fraction of the desirable (and assumed lighter) 
species A at the entrance port. Also denote the mass fraction of species A at the 
product port a t  r = a ,  z = 1 and at the waste port a t  r = b, z = 0 by up and ww 
respectively. The cut 8 is defined to be the ratio of the volumetric flow rate at the 
product port to that a t  the entrance port (Olander 1972). It is easily shown by 
requiring global species conservation that 

WE = (1 -8 )wW+8wp.  (3.11) 

One goal of cearifuge design is to maximize wp/wE for sufficiently large throughput. 
To develop the correct boundary conditions for the mass-transfer problem, 

consider first the geostrophic interior of the centrifuge. It has been demonstrated in 
$2 that, for either a thermally or mechanically driven centrifuge, the radial velocity 
u = O(E)  and the vertical velocity w = O ( B )  within the core. Let wo be the 0(1) first 
term in an expansion of wA in powers of in the core ; then it may be shown using 

(3.12) 
(2.27) and (3.5) that 

The solution of (3.12) must be carefully matched to the solutions of (3.5) in the 
velocity boundary layers. 

Consider the Ekman layer near z = 0 for which the scaled vertical coordinate is 
5 = af(p,(r)/E)jz, where a is defined in (2.30); substitution in (3.5) leads to 
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a@, S E M ~  a 
P e ( 4  W , ( r ) z  - r - & V w o ( l  -wo))  = 6V2wo. 

(3.13) 

where q is the dimensionless velocity in the Ekman layer. This equation suggests that 
the asymptotic expansion of wA in the Ekman layer is 

I& 
6 d  w A  = ao(r ,  C;) + -al(r,  C;) + . . . , (3.14) 

where the series is indeed asymptotic, and the error terms in (3.13) are small, only 
if I& 4 6 4 E-a; substitution of (3.14) into (3.13) gives 

a2wo azw, 
-- - 0 ,  -- - (q.V)TJ,. 
ap a% 

(3.15a, b)  

The boundary conditions are obtained by substitution of (3.14) in (3.10) and requiring 
that the species flux nA, vanish at C; = 0; this leads to 

(3.16) 

The solution of ( 3 . 1 5 ~ )  that satisfies the condition (3.16) and that matches smoothly 
into the geostrophic solution is wo = wo(r,  01, (3.17) 

and consequently the species mass fraction is invariant to leading order across the 
Ekman layer. The solution of (3.15b) satisfying (3.16) is 

(3.18) 
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Here G(r, 5) is the radial velocity in the Ekman layer and C, is an arbitrary function 
of r .  The asymptotic form of (3.18) is easily found to be 

where 

(3.19) 

(3.20) 

is the magnitude of the O(Ei )  volumetric flow rate per unit length of circumference 
in the lower Ekman layer; this quantity is given explicitly in (2.105). Expanding 
wo(r ,  z )  in a Taylor series about z = 0 and matching (3.14) leads to the boundary 
condition on the core solution oo(r,  z )  as z + 0. A similar procedure may be easily 
carried out for the upper Ekman layer, and the generalization is 

a t  z = zo = $+a. (3.21) 

Here F + ( r ,  1)  represents the volumetric flow rate in the + r-direction per unit length 
of circumference in the upper Ekman layer. 

To obtain the boundary conditions for oo(r ,  z )  a t  the sidewalls, consider first the 
E i  layer, for which the scaled radial variable is 7 = pi ( ro )  d( ro ) /3 ( r - ro )  E-4; here 
ro = a orb, and /3 = + 1 at ro = a and p = - 1 a t  ro = b. The expansions for the velocity 
components in the Eh layer are given in (2.86)-(2.88), and upon substitution i t  may 
be shown that the leading-order terms in (3.5) are given by 

and the form of this equation suggests an expansion in the a layer of the form 

(3.23) 

Here VG(T0) is the geostrophic azimuthal velocity associated with either a thermally 
or a mechanically driven centrifuge evaluated as r -+ro.  The usual limit process 
( E - 0 ,  7 fixed) applied to (3.22) leads to 

(3.24) 

The solid-wall condition is obtained by setting nA, ,. = 0 in (3.9), and this requires that 
dGo/a7 vanish at  7 = 0 ;  the solution of (3.24) satisfying this condition is 

4 3  = Ao(z),  (3.25) 

where Ao(z)  is a t  this stage an arbitrary function of z .  The equation satisfied by GI 
is obtained by substitution of (3.23) into (3.22), and i t  is easily shown that 

with the boundary condition (obtained from (3.9)) that 

(3.26) 

a6, 

as - = -6sM2roAo(z){l-Ao(z)} at 7 = 0. (3.27) 
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Here pe and r~ are evaluated a t  r = r,. The solution of (3.26) satisfying (3.27) is 

where B,(z) is an arbitrary function of z .  Note that, in order for the terms neglected 
in obtaining (3.22) to be small and in order for the series (3.23) to be truly asymptotic, 
i t  may be shown that S is restricted to the parameter range E 8 < S < E-i. 

As 7 + co, the series (3.23) must match the solution in the E f  layer; upon examining 
the form of (3.28) for large 7 and expressing 7 in terms of the E l  layer variable 
[ = 1/2dpiP(r-r0) E-i according to 7 = 1/+[p$cdl&, (3.23) becomes 

Here pe and u are evaluated at r = r,, and 9 4  is the magnitude of the O(Ei)  volumetric 
flux in the E i  layer per unit length of circumference in the positive z-direction, defined 

This quantity is evaluated in (2.107). 
The form of (3.29) suggests an expansion in the a layer, 

(3.30) 

(3.31) 

and, upon substitution in (3.5) along with the E i  layer velocity expansions given in 
(2.671, the lowest-order equations 

(3.32) 

are obtained, where W ( t ,  z )  is the magnitude of the O(Ef )  vertical velocity in the E: 
layer. The boundary conditions as E + 0 are obtained by substituting the expansions 
(3.23) and (3.31) into (3.9) and matching in the limits t + 0 , ~  -+ co ; this is equivalent 
to requiring that (3.31) behave according to (3.29) for small 5, and leads to 

(3.33) 
an 
aE 

- 0, pi  04 -l= - & P r o  A,( 1 -A, )  +Ppe Fj Ah, 

= 0. Again pe and CT are evaluated a t  r = r,. The solutions of (3.32) satisfying 

-- an0 

at 
(3.33) are 

(3.34) R,(t, 4 = A,(z),  

Rl(E, z )  = AA(z) (E-t) W( t ,  z)dt+ - { ~ p e F ~ A ~ ( z ) - S ~ P r , A o ( l - A o ) } .  t (3.35) s', &pi 

Note that i t  may be shown that, for the terms neglected in obtaining (3.32) to be of 
lower relative order and in order for the expansion (3.31) to be truly asymptotic, S 
is restricted to the parameter range ld < 6 < E-i. 

Matching to the geostrophic region is carried out by taking the limit for large t 
in (3.31) and (3.25) and by expanding w,(r, z )  in a Taylor series about r = r,; the 

(3.36) 
matching leads to 

AOk) = wo(7-0, 4, 

(3.37) 
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at r = r,; here again, for ro = a, p = 1 and for ro = b,  p = - 1 .  The quantity F s ( r o )  
denotes the total volumetric flow rate in the Stewartson layers, and 

F s ( r o )  = F;(ro) +F&ro) ,  (3.38) 

where F$(r,) is defined by (3.30); F i ( ro )  is the magnitude of the O(@) volumetric flow 
rate in the E f  layer in the positive z-direction per unit length of circumference, defined 
according to 

Ti(.,) = ~ - 4  p wi ldrl. (3.39) 

The boundary conditions for the geostrophic mass-fraction distribution are thus 
given by (3.21) and (3.37); however, for sM2 4 1 the nonlinear term in (3.37) is 
negligible and the boundary conditions contain only first derivatives. In this case the 
solution to (3.12) is only unique to within an additive constant; to pose the problem 
uniquely requires appending the condition (for the model centrifuge) 

0, = wE at z = 0, r = a .  (3.40) 

Note that the condition (3.11) need not be specified; it may be demonstrated by 
integration of (3.12) over the entire domain using the boundary conditions (3.21), 
(3.37) and (3.40) that the condition (3.17) is identically satisfied. 

For the model centrifuge depicted in cross-section in figure 1, the vertical drift 
velocity in the core is O(E4);  the magnitude has been computed in $ 2  and is 

(3.41) 

Here q is a constant related to the magnitude of differential rotation of the top and 
bottom plates and the amount of differential heating between the end plates; in 
particular (see (2.23) and (2.26)) 

q = hm(h,-h,)-~h~. (3.42) 

Finally, for the model centrifuge the volumetric fluxes may be evaluated using the 
results of $ 2 ,  and these are 

(3.43) 

(3.44) 

These results will now be used in Ss3.3 and 3.4 to examine solutions to the 
mass transfer problem for the model centrifuge. 

3.3. The core mas&-fraction distribution for 6 = 0 ( 1 )  
In this section, the solution of (3.12) subject to the boundary conditions (3.21), (3.37) 
and (3.40) will be computed for the case 6 = 0 ( 1 )  for the model centrifuge; physically 
this parameter range corresponds to the case of moderately forced flow in the sense 
that (from (3.7)) the fluid Rossby number cf = O(Eb)..It is assumed that cM2 4 1 ,  
and from (3.12) an expansion of the form 

OA = w E + ~ P w E ( ~ - o E ) o +  ..., (3.45) 

is suggested, where wE is the mass fraction of species A at the entrance port. The 
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perturbation term w satisfies 

and the boundary conditions are 

(3.46) 

(3.47) 

(3.48) 

w = O  a t  r = a ,  z = O .  (3.49) 

This linear boundary-value problem is difficult to solve owing to the complexity of 
the boundary conditions and the fact that the Ekman-layer fluxes in (3.47) and the 
vertical drift velocity in (3.46) are non-trivial functions of r ;  consequently a 
closed-form analytical solution is not readily available and solutions were obtained 
numerically using finite-difference methods. The numerical scheme is described in the 
appendix. 

Calculations were carred out for a binary gas having a Prandtl number Pr = 1 and 
a ratio of specific heats y = 1.05; in addition, a value of the parameter S = 1 was 
used. A number of different rotational Mach numbers O( 1 )  were considered as well as 
differing values of the cut 8 and the inner and outer dimensionless radii a and b 
respectively. In the calculations discussed in this section the parameter q (defined 
in (3.42)) was taken equal to zero, and consequently mass-fraction distributions were 
obtained in this parameter range for a purely source-sink flow only. I n  order to ensure 
an accurate solution, calculations were normally carried out with 3 mesh sizes. For 
a = 1, b = 2, for example, 11 points, then 21 points and finally 41 points in each 
direction were employed ; generally, for lower values of M ,  excellent agreement 
between successive solutions was obtained in this way. Typically several-hundred 
iterations were required for convergence. 

Some selected results are plotted in figures 2 and 3. In figure 2, lines of constant 
scaled mass fraction w are plotted for a pure source-sink flow. Note the sourcelike 
level curves in the vicinity of the entrance port at r = a, z = 0, which is suggestive 
of an irregular behaviour in w a t  the corner ; this is supported in the calculations, where 
it was observed that good agreement between successive solutions was hardest to 
achieve in the corner regions. However, it was observed in the calculations that the 
influence of the irregularity is largely confined to the corner region. The increasing 
enrichment toward the product corner should be noted, as well as the progressive 
depletion toward the outer wall. 

A separation or enrichment factor is defined by a = w,/w,, and a scaled separation 
factor is plotted in figure 3 as a function of the cut 8 for various geometries; the data 
points on figure 3 represent the results of numerical calculations for q = 0 with the 
rotational Mach number held fixed a t  M = 1 and the outer radius held fixed a t  b = 1 .  
It is evident from figure 3 that, for a fixed value of S d P (  1 - wE), the scaled separation 
factor (a- 1)/{SeM2wE( 1 -wE)} is nearly a linearly decreasing function of the cut; this 
variation is typical of centrifuge operation (Olander 1972). In  addition, it may be 
observed that a 'fatter' centrifuge (smaller inner radius a) leads to better enrichment 
for the model centrifuge. Several additional calculations were also carried out for 
different rotational Mach numbers M ;  these calculations indicate a linear increase in 
the parameter (a-  1)/{6e(l -wE)}withM2. Consequentlycnrichmentin thisparameter 
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FIGURE 2. Isomass-fraction lines for M = 1. Here a = 1, b = 2, the cut 19 = 05, and there is a pure 
sourcesink flow, f = 0. Numbers next to the curves indicate values of the scaled mass fraction 
0 = ( W A - W E ) / ( e M 2 W E ( 1 - W E ) ) .  

1.6 

I9 

FIGURE 3. Scaled separation factor as a function of the cut for several geometries. Here M = 1, 
b = 2. a, a = 1.5; 0, 1.0; 0, 05. Here q = 0. 
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range is also enhanced by increased rotation rates which again is consistent with 
observed trends (Olander 1972). 

3.4.  The mass-fraction distribution for small S 
In this section, a singular perturbation solution is developed for the mass-fraction 
distribution for the case 6 + 0. It may be observed from (3 .7 )  that 6 6 1 implies that 
eI >> B; consequently the centrifuge throughput must be relatively high, and this 
parameter range is referred to as the strong-forced-flow case. For the analysis in $3.2 
to be valid, S + E i, and therefore the parameter range of interest here is 

(3 .50a,  b )  

In addition i t  is assumed that eM2 is O( 1 )  in the limit process 6, E -+ 0. In this physical 
regime, the structure consists of a core distribution with concentration boundary 
layers having a thickness O(&) on r = a+ and r = b- . For WG > 0, a concentration 
layer of width O(S) exists on z = 1 - , while for WG < 0 the horizontal layer occurs a t  
z = 0 + . Note that, by virtue of (3 .50a) ,  both types of concentration boundary layers 
are thicker than any of the velocity boundary layers. 

In the core of the centrifuge, the following expansion is assumed for the mass 
fraction of species A : 

w A  = oE+6eM2w.(1-wE)wl(r, %)+ ..., (3 .51)  

where w E  is the value of wA a t  the entrance port. Substitution in (3 .12)  gives the 
leading-order equation 

pe(r )  W G ( ~ )  a:: 8% = 2 .  (3 .52)  

It is convenient to define a constant s by 

E i  < S < 1, E i  >> ef >> E?. 

= Sgn{WG(r)>, (3 .53)  

and substitution of (3 .51)  in the boundary condition (3 .21)  gives 

The solution is 

(3 .54)  

(3 .55)  

where C is a constant to be determined. 
The sidewall concentration layers are considered next, and define a boundary-layer 

variable y = P(r - r o )  S-i, where P = 1 for ro = a and /3 = - 1 for ro = b. Assuming the 

expansion W A  = W E  + Sdf2wE(  1 - W E )  w"i(y, Z )  + . . . , (3 .56)  

it  may be shown that 

the boundary condition a t  y = 0 follows from (3 .37 ) ,  and is 

This equation may be integrated to obtain 

(3 .57)  

(3 .58)  

(3 .59)  

where C' is a constant. 
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Consider now the concentration layer at r = a + ; since wA = wE a t  r = a ,  z = 0 then 
G' = 0. The solution of (3.57) that  satisfies (3.59) and matches (3.55) as y + co is given 

+(C+D,)erfc+D,, (3.60) 

where the constants Do, D, and D,  are 

U a(s- 1)  
Was) Fs(a) '  2Fs(a) ' 

n, = ~ D, = +(s- 1 )  Do, (3.61) 
2 D o = - - -  

and the variable t: is defined by 

(3.62) 

This solution describes a boundary layer that  originates at the corner r = a, 
z = +(1- s) and thickens along r = a towards the other horizontal wall. The value of 
w", a t  the product port is given by 

U 
&,(a, 1) = - 

Fs(a) ' 
(3.63) 

and using (3.59), together with the global species-conservation result in (3.1 l ) ,  the 
variation for the boundary-layer function on r = b may be shown to be 

(3.64) 

This is the boundary condition at y = 0 for the calculation of the concentration-layer 
solution near r = b .  This solution is given by replacing a by b in (3.60) and (3.62) and 
by replacing the constants Do,  D, ,  D ,  by 

(3.65) 

respectively. 

variable 
A horizontal boundary layer is required a t  z = S(s+ 1 )  ; defining a boundary-layer 

(3.66) 

= -s(z-+(l + s ) )  6-' and an expansion according to 

w A  = w E + 6 e p w E ( l - w E ) w , ( r ,  c)+ ..., 
the leading-order form for (3.12) is 

The boundary condition a t  5' = 0 is obtained from (3.21) and 

(3.67) 

(3.68) 
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while matching to the core solution (3.55) requires that 

(3.69) 

where D is another constant to be determined. 
It may readily be shown by consideration of the extension of the O(6) horizontal 

concentration layer under the O(&) sidewall layers that, for s = 1 ,  the limit of (3.70) 
a t  6 =0, r + a must be equal to the limit of (3.60) a t  6 = 0, z + 1 .  This gives a 
continuous solution in the corner r = a + , z = 1 - ; an analogous condition is applied 
in the corner r = b - , z = 1 - . If s = - 1 ,  the sidewall concentration layers originate 
in the upper corners and grow toward z = 0 ; in this case continuity in the corners 
(a,  0) and ( b ,  0) is required. I n  either case these conditions determine values for the 
constants C and D in (3.70), and 

C{UF+(U, ZO)-bp,(b) F ; ( b ,  z 0 ) }  = - 
2 

(3.72) 

A self-consistent solution has been completed here for E f 4 S -g E 4 ; in terms of the 
performance of the centrifuge, the principal result is the evaluation of the enrichment 
factor 01 from (3.63) and 

(3.73) 

where the flux in the sidewall boundary layer is given by (3.44) according to 

Fs(a)  = g(B+ l)++q(v(a))-:. (3.74) 

(3.75) 

Note that F s ( a )  = 0 at q = qc, where 

qc = - 2( 1 + 0 )  (a(a))i ,  

and near this critical level of differential rotation and/or differential heating, (3.73) 
is not valid. In  this situation the concentration-layer problem on r = a must be 
re-examined. I n  particular, consider the case when SS(a) = O(&) ; i t  may be deduced 
from the boundary condition (3.37) that  in this situation the perturbation in the 
centrifuge to the entering value wE is O(S4) and that all terms in (3.37) are important 
to leading order on r = a. In  addition, the expansions in the core region and boundary 
layers given by (3.51) and (3.56) must be modified to include an 0 ( 6 + )  term. The 
boundary-layer structure is similar to the previous case, but the solutions are complex 
and are not included here. 

As long as 6 i / F S ( a )  is o ( l ) ,  the solution (3.60) is correct, and it is of interest to 
examine the properties of the mass-fraction distribution in this parameter range. In  
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FIGURE 4. Isomass-fraction contours for wA for q = - 1, M = 1 ,  a = 1 ,  b = 2, 0 = 0.5 and 
B = 001. Here wE = 005 and the boundary-layer regions are to scale for S = 0 0 2 .  Contours for 
w A  are a t  intervals of 1.6 x Typical values of the mass fraction are indicated. 

figure 4, absolute isomass-fraction contours are given for the case wE = 0*05,6 = 0.02 
and E = 0.01; in addition, the cut 8 = 0 5  and a = 1,  b = 2. The rotational Mach 
number M = 1, and there is a downward drift in the core region with q = - 1 ; note that 
this value of q is close to, but greater than, the critical value given in (3.75). To prepare 
figure 4, a composite solution consisting of the core and boundary-layer concentration 
solutions was formed. Generally the values associated with each contour decrease 
radially outward in figure 4. Note the collection of contours near the product port; 
in addition the presence of the sidewall boundary layers as well as the endwall 
concentration layer at z = 0 is clearly demonstrated. 

In figure 5, the scaled separation factor (ct-1)/{~6aM2(1-ww,)} is plotted as a 
function of the parameter q for various values of the inner radius a. Positive values 
of q correspond to the physical situation of an upward drift in the core induced by 
either differential rotation or differential heating, and in this case a net upward motion 
occurs in the velocity boundary layers a t  r = a. Enrichment always occurs for q > 0, 
and is essentially independent of the inner radius a as well as the value of the outer 
radius b. As q decreases, the enrichment process is enhanced and the separation factor 
increases to relatively large values, as the critical value of q given by (3.80) is 
approached. For q < 0, the induced drift in the core is downwards, but in the regime 
depicted in figure 5 the net motion in the sidewall velocity boundary layer a t  r = a 
is still upwards. As q -P qc the flux in the boundary layer approaches zero. Note, in 
this parameter range, that separation is enhanced at  smaller values of the inner radius 
a. For q < qc, it may be inferred from (3.73) and (3.74) that the mixture becomes 
depleted in species A a t  the product port; in this regime, the vertical velocity in the 
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4 

FIGURE 5 .  Enrichment for small 8 versus q for h? = 1,o  = 0 5  and various values of a : -, a = 2 ; 
_-_ , 1.5; ----, 1. Note that the enrichment is independent of b .  

boundary layers and the core is negative. The physical reason for this behaviour is 
as follows. 

As the binary gas enters at the feed port it rises into the & layer on r = a, and 
a portion moves radially outward toward the Ef layer. As the gas enters the Ef layer 
it is deflected toward the Ekman layers on the endwalls, whereupon the source-sink 
part of the flow moves outwards toward r = b. For q < 0, a recirculatory motion in 
a counter-clockwise direction is set up and superimposed on the source-sink flow. As 
the gas stream traverses the bottom Ekman layer, depletion of species A occurs and 
a portion of the gas stream is removed at the waste port; the rest of the stream 
recirculates up the outer sidewall velocity boundary layer and enters the top Ekman 
layer. As the gas moves radially inward along the upper Ekman layer, enrichment 
occurs according to (3.55). For q < 0 but q > qc, the stream in the upper Ekman layer 
meets a stream of gas that rose directly from the feed port and which is also enriched 
according to (3.59) for 9,(a)  > 0. Maximum benefit occurs as F,(a) + O +  , so that 
there is only a slight upward drift in the boundary layer at  r = a. For q < qc the effects 
of differential rotation and/or differential heating exert an increasingly dominant 
effect on the source-sink flow, and a strong and detrimental net recirculation is set 
up in the container. 

In figure 6, the scaled separation factor (a-l)/{as~M2(1-wwE)} is plotted as a 
function of the cut 8. Note that better enrichment is obtained for smaller values of 
the cut; this result is compatible with observed centrifuge operation (Olander 1972). 
Finally, it may be inferred from (3.73) that the enrichment increase is proportional 
to M2 for fixed E ,  8,  a, b and q. 

4. Conclusions 
In this paper, the mass-transfer problem for a binary gas in a rapidly rotating 

centrifuge has been formulated and solutions have been obtained for two parameter 
ranges for a model centrifuge configuration. A practical application to which this 
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FIGURE 6. Enrichment for small 8 versus the cut 8, and p = - 2 for different values of the rotational 
Mach Number; -. M = 1 ; ---- 1 ,  2 .  ------, 4. 

theory may be applied is the separation of uranium isotopes U,,, and U,,, ; in this 
case the working gas is uranium hexafluoride UF, (Olander 1972). Solutions for the 
model centrifuge have been obtained in the two parameter ranges corresponding to 
moderate and strong forced flow through the centrifuge. I n  both regimes the results 
for the separation factor a indicate that : (i)  better enrichment is obtained a t  increased 
rotational Mach numbers ; (ii) enrichment is enhanced for ‘fatter’ centrifuges 
corresponding to a smaller inner radius for a given value of the outer radius; and (iii) 
enrichment decreases with increasing cut. These conclusions are in agreement with 
observed centrifuge operation (Olander 1972). I n  the strong-forced-flow case, max- 
imum enrichment occurs for a downward drift in the core of the centrifuge; this drift 
may be induced either by a differential rotation of end plates (a mechanically driven 
centrifuge) or by an applied vertical temperature gradient (a thermally driven 
centrifuge). Increasing enrichment is obtained as the magnitude of the downard drift 
reaches a critical level where the net vertical motion in the sidewall velocity boundary 
layers at r = a approaches zero. For geostrophic drift velocities in the core greater 
than this critical level, a strong recirculation occurs in the container and a depletion 
of the desirable species occurs a t  the product port. 

Comparison with previous studies of the mass-transfer problem is made difficult 
because of differences in geometry and differences in the methods of feed and 
withdrawal. The data of Beams that is used by Nakayama & Torii (1974) in their 
study of the mass-transfer problem is for a circular cylindrical container. The study 
of Matsuda (1975) also applies to  a cylindrical container where injection and 
withdrawal occurs through the endwalls. A similar cylindrical geometry is discussed 
by Soubbaramayer (1979). I n  general, however, the separation factors computed by 
these authors are comparable in magnitude to those calculated for the present 
centrifuge and moreover show the same trends (decreasing enrichment with increasing 
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feedrates, for example). I n  addition, i t  appears that  (at least in the early experimental 
studies) the parameter ranges treated here for S = 0(1) (moderate forced flow) and 
S 4 1 (strong forced flow) are the practical ranges of interest. Unfortunately, most 
of the modern experimental work in this area is not available in the open literature 
and detailed comparison with experiment is not possible here. The trends calculated 
in this study are qualitatively similar to the numerical results of Nakayama & Torii 
(1974), Matsuda (1975) and Soubbaramayer (1979); for example, figures 3 and 5 of 
the present study are qualitatively similar to figure 4.21 of Soubbaramayer (1979). 

The analysis described in this paper may be used with some modification to 
investigate other centrifuge configurations. I n  particular, work is continuing on the 
important problem of determining the location of the feed, product and waste ports 
as well as the cut such that optimal centrifuge performance for a given geometrical 
configuration may be achieved. 

The authors are grateful for helpful discussions with Prof. F. Erdogan. 

Appendix 
Here the details of the discretization are described for the numerical method used 

to solve the mass-transfer equation (3.46) subject to  the conditions (3.471-13.49). A 
square mesh was defined having a mesh length equal to kin both the r- and z-directions, 
and standard central-difference approximations were used for each of the derivatives 
in (3.46) ; this procedure leads to a difference equation of the form 

Here i and j denote typical locations in the mesh in the r- and z-directions 
respectively, and 0 < i , j  < N, where N is the total number of mesh points in either 
direction. 

The presence of derivatives parallel to the boundaries in both boundary conditions 
(3.47) and (3.48) requires special consideration. Consider for example the condition 
(3.48) a t  r = a ;  it was anticipated that variations in o normal to  the boundaries would 
be more severe than in the tangential direction and for this reason a sloping-difference 
approximation was used for the radial derivative, according to 

k%I x 8 - 1 + 18w,,,- + 2w,J, 
ar r - a , z = j k  

where the truncation error is O(k4) (Abramowitz & Stegun 1965, p. 883; Walker & 
Dennis 1972). A central difference approximation was made for the z-derivative, and 
this procedure leads to a difference equation 

3 
-pe(a) F,(a) { ~ o , j + ~  - ~ o ,  3-J+ 1 b , j  = 1 8 ~ 1 , j  - 9 ~ 2 , j  + 2 ~ , , , +  6ak, 6 -  (A 3) 

for each internal mesh point (1  < j  < N) on r = a. 
Except a t  the entrance port, a special treatment of the corner points is required, 

and as an example consider the mesh modification near the product port a t  r = a ,  
z = 1 that is illustrated in figure 7 .  Here additional mesh points have been introduced 
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FIGURE 7. Numerical mesh near the product port at  r = a, z = 1.  Additional points added to the 
basic mesh are a t  the intersection of the broken lines. 

outside the container at ( a - k ,  1 )  and (a ,  1 +k). The differential equation (3.46) was 
approximated at  the cornerpoint, and this leads to a finite-difference equation of the 
form (A 1) with i = 0, j = N ;  note that this difference equation involves values of 
oel, and wo, N+l  that are unknown values o f o  outside the container. To relate these 
values to  points within the container the boundary conditions (3.47) and (3.48) are 
applied in the limits z = 1 ,  r -+ a and T = a ,  z + 1 respectively. Using ordinary 
central-difference approximations for the derivatives, this procedure leads to 

-pe(a) Fi(a, 1) {ui, N-u- i ,N)  = J{wo, ~ + i - ~ o ,  ~ - 1 1 9  

pe(a) F&a) {wo, ~+i-uO, ~ - i ) - J a k  = J{wi, N - 0 - 1 ,  N ) .  

(A 4) 

(A 5) 

These two equations were then used to eliminate the quantities w ~ , ~ + ~  and w - ~ ,  in 
(A 1 ) ;  this technique leads to a single difference equation at the product port 
involving u0, N - l ,  wo, N ,  and wl, N ,  which is termed the cornerpoint equation. Similar 
equations were obtained at the corner r = b, z = 1 and the waste port r = b, z = 0. 
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